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Preface

I first became aware of residue numbers and their potential
while attending the thesis presentations of class GE 62. The
work done by Capt. Arthur J. Altenburg of that class aroused in
me considerable interest in this unique number system. Thus,
when the Computer Section, Bionics and Computer Branch, Electronic
Technology Laboratory, Aeronautical Systems Division, suggested
to my class the subject of analog-to-residue number conversion
as a possible thesis topic I was immediately enthusiastic.

As originally conceived, my thesis project was simply one
of adaption. I had felt thét a suitable result would be obt;ined
if standard analog-to-digital conversion techniques were modified
80 as to be applicable to residue numbers. With this goal, 1
began to study present day conversion methods. During a discus-
sion of some results of my study, Mr. Dewey E. Brewer, the ASD
sponsor for my thesis, suggested the possibility of using vernier
devices. To determine the feasibility of this idea, I constructed
a simple model. This model showed that a definite relationship
exists between residue numbers and the coding system used on a
vernier device. Because of this discovery, I abandoned my original
idea and changed my thesis project to an investigation of the rela-
tionship between vernier devices and residue numbers. This paper
gives the results of that investigation.

I want to emphasize that practical application is not the

ii
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primary intention of this paper. The main excuse for its exis-
tence (besides the obvious one) is the possibility that it might
provide some slight additional ingight into the properties of
residue numbers. However, I could not help but visualize certain
applications. Some of the more reasonable speculations are in-
cluded in the recommendations of Chapter VI.

The work presented in this paper is to the best of my know-
ledge my own. As a result, any errors that appear must of neces-
sity be brought to my doorstep.

At this time I wish to add a few personal notes. First, I
wish to acknowledge my indebtedness to the United States Air Force
for affording me the opportﬁnity of continuing my education, and
to the Air Force Institute.of Technology for providing me with the
means of taking advantage of that opportunity. Next, I want to
express my appreciation to Mr. Brewer, who so kindly sponsored my
work; to Capt. James E. McCormick, my Faculty Thesis Advisor, whose
expressed confidence in my work gave me the extra incentive needed
to overcome the bad moments that occur in a work of this natureg
and, to Capt. Frank M. Brown, who as a teacher and as a friend
provided invaluable guidance. To these people I offer my most
heartfelt thanks.

Finally, I must express my indebtedness to my wife. Her

constant encouragement and cooperation made this work possible.

Not least among the many things she did for me was the typing

of the manuscript.

Richard E. Evans
114
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THE VERNIER DEVICE
AND

RESIDUE NUMBER SYSTEMS

I. Introduction

It was in 1935 that Americans first became aware of the
work being done by two Russians, M. Valach and A, Svoboda, on
residue number systems. Their work, which shows the possibi-
ities of the application of residue numbers and the associated
arithmetic to computing machinery, has stimulated considerable
activity in this country. The culmination of this activity
will be the completion at the end of this year of an experi-
mental computer based on the residue number concept.

The property of residue numbers that has generated all
this interest has to do with the carry operation in arithmetic.
In present day computer coding systems, the necessity of hand-
~ ling the carry results in limiting the speed of operation.
Residue number systems offer a solution to this problem because
the notion of carry is not involved in the algorithms for addi-
tion and multiplication. This makes possible the construction
of economical arithmetic circuits capable of very high speed
operation. However, before residue number asystema can be
successfully aéplied to general purpose machines, efficient

means must be derived to overcome several difficulties.
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These difficulties include: the determination of relative
magnitude, the determination of algebraic sign, round-off,

and division (Ref 1: Chap. III, p. 3). As a result of these
and other problems, there is still a definite need for further
theoretical development of the properties of residue number
systems, This paper is ;n attempt to contribute in a small
way to this need.

The purpose of this paper is to investigate the proper-
ties of residue number systems and of vernier devices. The
intention of this investigation is to show that these seemingly
unrelated subjects are, in fact, very closely related. To make
this relationship manifest, mathematical expressions are developed
which show that given certain defined parameters, a vernier
device may be constructed so that its scales provide readings
in a given residue number system - the readings being the
residue number representation of the decimal distance measured
by the device.

To accomplish the above purpose, this paper is basically
separated into three parts. In the first part (Chapter II),

a theory of conventional vernier devices is developed. This
theory is not specifically applicable to the use of vernier
devices with residue number systems. However, its development
is necessary in order to provide a starting place for the

development of a theory that does apply.
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The second part of this paper (Chapters III, IV, and V)
is concerned with the development of the vernier device, residue
number relationships. Chapter III presents a brief and limited
introduction to the concept of residue numbers. The introduc-
tion is intended only to prepare the reader for the subsequent
development in Chapter--IV and V. Chapter 1V is the heart of
this paper. It presents the theoretical development for the use
of residue numbers with a basic two-scale vernier device. The
results of this development are the sufficient conditions for the
design and the requirements for construction of the basic two-scale
device. The device so designed and constructed i. referred to as
a "residue vernier'. Sub-;qucntly, (Chapter V), the theory of the
two-scale device is extended and generalized so that it applies to
the more complex multi-scale devices. This leads to the general-
ized sufficient conditions and requirements for the design and
construction of residue verniers.

The third and final part of this paper (Chapter VI amd VII)
presenta a summary of the pertinent results of the investigation

and gives recommendations for further work in this area.
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I1. Copventional Verniers

The vernier dovico was first described by its inventor,
Piere Vernier, in 1631, 4s conceived by him, the device pro-
vides a method for increasing the accuracy with which scales
may be read. This chapter will discuss Vernier's device from
the standpoint of its conventional use. A later chapter will
introduce a new and different mode of application, the use of
vernier devices with residue number systems.

The discussion in this chapter will be in two sections.
The first section will briefly describe conventional vernier
devices and will give a few simple illustrations of their use.
This section is primarily intemded to be a review that will
refamiliarise the reader with the operation of conventional
verniers. Though such dovico- are not the direct concern of
this paper, their rcvioﬁfihould enable the reader to better
follow the -nb.oquoqtrghoog’tlcul development. The second

section of this ehaptoh‘y;}%icoanilt of the author's develop-

£

ment of the thoory-ittoporniion of conventional vernier devices.

This development '§}1wbo g.notul in nature, and will not be
specifically appltcaﬁ;f to . tlo use of verniers with residue

number systems. 'Io-ov.r. thn dovolop-out of this theory is
? ‘l\: % -

necessary in ordor to ’rovido the insight required to associate
o

vernier devices witl rontdmo aumbers.




GE/EE/63-7

Conventional Vernier Devices

Conventional vernier devices consist of an auxiliary
(vernier) scale sliding in contact with the scale to be read
(main acale). The vernier scale is divided into N, intervals
which occupy the same space as Nv 4 | intervals on the
main séale. Each 1ntcrv&l of the vernier scale will then

occupy 12 -ﬁL— intervals of the main scale. When the

relation N' + 1v is used, it is necessary for the vernier
and main scales to read in opposite diroction-; This type of
device is known as a retrograde or reverse vernier. When the
relation Nv -1 is used both scales read in the same direc-
tion, and the device is kn#wn as a direct vernier. .

Linear Verniers. Scales used to provide linear measure-
ments are generally deaigned to give readings in decimal form.
To obtain decimal readings the vernier scale is divided into
ten intervals. The combined length of these ten intervals is
made equal to the length of either nine or eleven intervals on
the main scale depending on the type of vernier desired. Figure
1 illustrates both types of linear verniers.

Angular Verniers. Scales used to measure angles may be
designed to read decimal parts of degrees by using the same
interval relationships as described for linear scales. Angular

acales designed to read in minutes or seconds of arc, however,
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Fig. 1

Linear Verniers
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require a different relationship. Also, since it may be desir-
able to measure angles in either direction, the verniers are
usually double (i.e., a single vernier is placed on each side
of the fiducial, one of which is to be used in reading angles
to the right, and the other in reading angles to the left).
Figuroyz(a) illustrates a typical direct angular vernier used
to read to one minute of arc. This device is constructed by
dividing the main scale into degrees and half-degrees. The
vernier scale is then made to provide one minute readings by
taking a length equal to 29 of the half-degree intervals and
subdividing it into 30 oqugl parts.

For some angular verniers the length of the acale makes
it impracticable to use a double vorqicr. It it is ltill.
desirable to read angles in either.direction, a single vernifer
with two rows of numbers may be used as shown in Fig. 2(b).
It is evident that if angles are to be read clockwise the right
fiducial should be used; whereas, angles to be read co;n@pr-
clockwise require the use of the left fiducial. To édqif?pét
this device the main scale is divided into 20° -paco-.fﬁihp
vernier scale is then made to provide 20" readings by ;uklnc'

a length equal to 59 of the 20' sapaces and subdividing it inte

60 equal parts.
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- Vernier Scale
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(a) Double Vernier Reading To 1°'
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(b) Single Vernier Reading to 20"

Vernier Bcale

Main Beale

(¢) Folded Vernier Reading to 1°'

Fig. 2

Direct Angular Verniers
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The inconvenience of two fiducials may be overcome by uas-
ing the middle line as the fiducial and "foliding" the ascale as
shown in Fig. 2(¢c). This "folded"” vernier is read like an
ordinary vernier except that if coincidence is not reached by
passing along the vernier in the direction in which the main
scale i- numbered, it is necessary to go to the other end of
the vernier and continue in the same direction, toward the
center, until coincidence is found. The design relation for
this device is the same as that used for the vernier illustrated

in "‘so 2(‘) .

Theory of Conventional Verniers
Definitions and Conditions. As previously mentioned, the

following development of vernier device theory is general in
nature, and is not directed toward the ultimate use of vernier
devices with residue number systems. However, it does lay down
the necessary groundwork for the development of that use.

A eonvontional‘vernicr device is normally thought of as
consisting of two scales, a main scale and a vernier scale.
However, for the following development it is necessary to
consider a vernier device as made-up of three scales: a primary
scale consiltiqg.of the primary divisions of the main scale, a
secondary scale consisting of the subdivisions of the primary

scale, and a vernier scale. Also, for this development it will




GE/EE/63-7

be convenient to use the length of a single vernier scale as
a reference. For this purpose, this length is defined as a
"vernier scale cycle" (e.g., the double vernier scale in Fig.
2(a) is a two-cycle scale).
With the above provisions in mind, the following symbols
are defined:
N.p = number of intervals on the secondary scale per
primary scale division
N-' = number of intervals on the secondary scale per
vernier scale cycle
N = number of intervals on the vernier scale per

vernier scale cycle

L = length of one primary scale division
L = length of ene secondary scale interval

Lv = length of one vernier scale interval

1]

From practical considerations it may be seen that N.p. N-v
and Nv must be integera. .Allo. in order to prevent any
ambiguity of coincidence between the secondary and vernier
-galel. it is necessary that N.v and Nv be relatively prime.
Distance Equation. When there is coincidence between

the secondary and vernier scales, as shown in Fig. 3, then

a distance equation may be written such that

10
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pr = pr +slL +ml -nL (1)

where xL = distance between primary scale zero and fiducial

pL_ = largest integral multiple of Lp between primary

scale zero and fiducial

sl = largest integral miltiple of L‘ between last
primary division and fiducial

ml. = distance between last secondary division and
coincidence of scales

nLv = distance between coincidence of scales and ficucial

It should be noted that the set p, s, m, and n is a unique funce
tion of x, and with coincidence it is a set of integers.
From the definitions in the preceding subsection it may be

seen that

L
—L
L. = X (2)
sp
N-'L. N.VL
v N N_N
v sp v

The substitution of Eqs (2) and (3) into Eq (1) gives

12
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pr
l 1 xL
— P
L‘
I(Eﬁ) ;"
L -
V(Iﬂ%)"//'¥ —fe—
Y
Fig. 4

Conventional Linear Vernier
(N.p =10, N_ = 10)

13
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L L
pr = pr .8 (-in-) * (-Nv - nN.v) 'E'BE" (4)
sp sp v

The meaning of Eq (4) may be better understood by use of

an example. From Fig. 4 it may be seen that if the length Lp

is one inch, then

x (inches) = p (inches) + s (tenths of an inch) (5)

+ v (hundredths of an inch)

where p, s, and v are the respective readings of the primary,
secondary, and vernier .cile'. For the conventional linear

vernier illustrated, N.p
of these values and Lb = 1 inch into Eq (4) gives

10 and Nv = 10. Substitution

x (inches)= p (inches) + s (tenths of an inch) (6)

+ (va - nN'v) (hundredths of an inch)

Comparison of Eqs (5) and (6) shows that v, the reading of

the vernier scale at coincidence, must be given by

v = mN « nN (7)
v

[-) 4

14
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The significance of this important relationship will be
examined in detail in the next subsection. For naw it is
sufficient to realize that the use of Eq (7) allows Eq (4)

to be written as

[ ] v

X = . +
P Nlp NIPNV (8a)

PN N ¢+ 8N _ e+ v
or x = I.L; N ¥ (8b)

sp v

where p, s, and v are the scale readings of the device.
Equation (8) is the basic equation behind the operation

of vernier devices. It shows why it is possible, when using

such a device for measurement, to take the readings directly

from the various scales to obtain a numerical evaluation of

the length (angle) being measured. Perhaps a better under-

standing of Eq (8) may be obtained by returning to the example

illustrated in Fig. 4. PFor this device Eq (8) becomes

2
- v p(10°7) + 8(10) + v (9)
x = p ’ I ’ ——— =
10 10° 102

19
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and takes on the familiar form of the base 10 (decimal) number
system.

A relation indicated by Eq (8) is worthwhile noting, al-
though any development of it is beyond the scope of this paper.

It may be seen from Eq (8) that by appropriate choice of N.p

and Nv the value of x may be obtained in any desired fixed or

mixed radix number system. From the viewpoint of this paper,

however, the relation given by Eq (7) has greater consequence.
Vernier Scale Coding. To examine the meaning of Eq (7)

it is first necessary to write another distance equation. From

Fig. 3 it may be seen that.

yL, ==L = nL, (10)

where yL.< is defined as the distance from the last secondary

division to the fiducial. Also, it may be seen that
0Ogyel (11)

Substitution of Eqs (2) and (3) into Eq (10) gives

o N

v

16
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The combination of Eqs (11) and (12) results in

OgmN -nN < N (13)

It will be seen later that the difference ".v - Nv

is a convenient parameter for verniers. With this in mind,

the expression va - nN.v may be rewritten as

mN_ - nN_ = gN_ - oN (14)

where N=N_ =N, (15)
qsm-n ' (16)

Thus, O g o, -nN g N/ (17)

An examination of the factors that form the expression
qu - nN gives the following: the factors Nv and N are
constants when a specific vornicr.dovicc is under comnsidera-
tion, the factor m is the number of intervals a given line on
the vernier scale is from the fiducial, and the factor q is an
integer. When N, and N are given, the inequality of Eq (17)
shows that the value of q is a function of n. Since q is a
function of n, it follows from Eqs (7) and (14) that v is also
a function of n. Thus, v, the mumerical value given a parti-

cular line on the vernier scale, is diroctly related to n, the

1?7
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number of intervals a given line on the vernier scale is from
the fiducial. Since v will take on a sequence of values Eqs

(7) and (14) may be combined and rewritten as
¥a} = {at)N, - nN} (18)

where n = 0,1,2, o0y Nv and 0 < Vo £ Nv

Because this sequence determines the numerical coding of the
vernier scale, {vn} will be referred to as the coding sequence.

The direct and retrograde vernier scales previously discussed
are special cases of Eq (18) where ivn} is a -6notone sequence.
The direct scale requires a sequence that is monotone increasing;
the retrograde scale requires one that is monotone decreasing.

In order for {?n} to be monotone, it is necessary that
= Vk 2 1 (19)
The restriction of Eq (19) applied to Eq (18) gives

\ £

ko1 = Y = [atke1) - qu0)] N - [(k41) - k]N (20)

1§ 4 . r £ q(k+l) - q(k) (21)

then Eq (18) becomes

N =rN_ +1 (22)

18
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Since q(n) is an integer it follows from Eq (21) that r is an
integer. Also, Eq (21) indicates that r may be a function of

n. However, Eq (22) presented in a little different form

r 8' N (23)

shows that r must be a constant for a given monotone sequential
vernier. It will be proven in the following subsection that r

may have the values

r = "1.0’1.2'3. eoe . (24)

Thus, Eq (22) states that a vernier device with parameters
such that N is equal to an integral multiple of N minus (plus)
one will have a monotone sequence as a code. The minus sign
in Eq (22) results in ivn} being a monotone increasing se-
quence (direct vernier), while the plus sign gives a monotone
decreasing sequence (retrograde vernier). Figures 3 and 6
illustrate how the conventional vernier scales result from the
above relations when N =+ 1, (r = 0).

When Eq (22) is not satisfied ivn} will be non-monotone.
An example of a vernier acale coded by a non~-monotone sequence

is illustrated in Fig. 7. Though the parameter r is defined
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Folded Vernier

22




GE/EE/63~7

for monotone sequential verniers only, it may be noted from

Fig. 7 that q(k+l) - gqlk) is not a constant for the non-
monotone sequential vernier. Because of the lack of a better
name - due, no doubt, to a lack of imagination - the author

has chosen to refer to verniers coded by non-monotone seqguences
as "folded verniers". The reader is cautioned not to confuse
the folded (non-monotone) vernier with the 1vlded angular
vernier discussed earlier. Because of the difficulty with
interpolating non-coincident readings, folded ;ernierl are

of little practical value for use as conventional verniers
designed to measure length (angle). However, folded verniers
are important when vornier'dovicoo are used with residue numbers.
As a result, they will be examined in more detail in the follow-

ing subsection.

Vernier Families and the Folded Vernier. From Eq (11) it
can be seen that the "least count” of a vernier (the smalleat
L
divisien that can be read directly from a vernier) is -i-%- ¢
' sp v
Thuas, for given values of N.p and Nv' a family of vernier
devices having the same least count may be constructed by
assigning different values to N-v' A given vernier family
will consist of two subgroups: the monotone -oquontial verniers

and the non-monotone sequential verniers. Figures 5 and 6 are

examples of the former, while Fig. 7 is an example of the latter.
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Subgroups in any family share common characteristics and
interconnecting relationships. The vernier families are no
exception. The subsequent development will show that a given
non-monotone sequential vernier is directly related to a mono-
tone sequential vernier of the same family. However, before
beginning this development, it is first necessary to examine

r of Eq (22) and prove Eq (24).
From the inequality of Eq (17) it may be seen that

B < aln) g 1+ (25)
v

If n takes on the values k and k+l1, then

- s ) g -qk) g - (26)
v v
Nik+l) :*1 < alkel) < 1 +————N(:*“ (27)
v v

The addition of Eqs (26) and (27) and the substitution of kq

(21) into the resulting sum gives

N
v

-!—-lsrs—%-ﬁ.l (28)
v
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The substitution of the definition of N, Eq (15), allows Eq

(28) to be rewritten as

ey -24rg Cav (29)
N, : N,

In a given vernier family Nv is a constant and N.' may take
on any positive integer. As a result, for a given family, Eq

(29) shows that r may take on the values as given in Eq (24)
r's= -1’0'1'2.3' se e (24)

From Eq (22) it may be seen that the consequence of r being
able to take on an infinite number of values is that in a given
vernier family there are an infinite number of monotone sequen-
tial verniers.

From the relations that have been previously developed
the following expressions for i given family of verniers -a&

be written

N' =N, -N_ & rN 31 (30)

4+
>

N" o N:v - N' = rN (31)

(] " ; [] "
where l.p = N'p = N.p and NV = N' = NV
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The prime indicates a non-monotone scvquential vernier and the
double-prime indicates a monotone sequential vernier. The in-
trafamily relationship between the two types of verniers will
now be developed by first assuming a relationship and then show-
ing that such rolationnhiphis valid.

An integral relationship is assumed to exist between N;v

"
and N-v such that

" [ ] :
Nnv =tN . (32)
where t =

Substitution of Eq (32) into Eq (31) gives

t Nl =N_+rN +1 (33)
ir u g.r.+ 1 (;4)
then Eq (33) becomes

Ni, t = Nu=%1 | (35)
where : U = 0y1,2,3, eoe
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Equation (35) is a linear indeterminate equation with two
unknowns, t and u. The factors N;v and Nv determine a specific
non-monotone sequential vernier within the given family. Also,
since u is a function of r, the two factors u and Nv determine
a specific monotone .oquenftal vernier. Thus, if Eq (33) has
a solution such that u is a positive integer, that solution
proves the initial assumption, Eq (32); also, the solution
gives the integral relationship t that exists between the two
types of verniers.

A linear indeterminate (Diophantine) equation with two

unknowns in the form

ax + by = ¢ (36)
has a solution in integers if and only if the greatest common
divieor of a and b divides c. If a and b are relatively prime
(greatest common divisor of one) and X0 Y, is a solution, then
there are other solutions which are given by

X = X_ + bm y=y, - am 37)

where m is an jnteger. Proof of these astatements may be found

in any standard text on number theory (Ref 3:148).
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Since N! and N_ are relatively prime, Eq (33) meets the

above condition and has solutions of the form
t =t + mN u-uo—nN' (38)

The factor m may take on any integer value; hence, there will
be some solution to Eq (35) where u is a positive integer. As
a result, for every non-monotone sequential vernier there will
be a monotone sequential vernier that is directly related to
it. This relationship will be expressed by Eq (32) where the
factor t will be determined by Eq (35).

It should be noted that Eq (35) is actually two equations;
thus, there will be at least two values of t that will provide
integral relationships between the two types of vernier scales.
One value of t will relate the fo}dcd (non-monotone sequential)
vernier to the direct vernier; the other value of t will relate
the folded vernier to the retrograde vernier. F{gures 8 and 9
illustrate these intrafamily relationships.

A study of Figs. 8 and 9 from a geometric point of view
reveals that in order to have a direct correlation between the

two types of verniers it is necessary that

1] =
NLY = |t Ny (39)
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This equation shows that a folded vernier may be considered as
being constructed from a monotone sequential vernier. This
construction is accomplished by dividing the monotone sequential
vernier into |t| sections of equal length and then stacking the
sections as shown in the Figs. 8 and 9.

Summary of Pertinent Results. The pertinent results from
the above development may be summarized as follows:

l. To prevent ambiguity in the scale readings, it is

necessary that N-v and Nv be relatively prime.

2. The basic equation describing vernier operation is

s v pN!PNv + -Nv + Vv
Xx=p+y * NN = NN (8)
sp sp v sp Vv

where p, s, and v are the respective readings of the primary,
secondary, and vernier scales.

3. The coding of the vernier scale is determined by

: Val = atoN, - nN } | (18)

where n = 01,2y 0oy "v and O s vn < Nv
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4. To construct a monotone sequential vernier it is

necessary to satisfy the equation

N=rN_%1 (22)
where r = -1,0’1'2'3' XK

(the use of the minus sign results in a direct vernier; the

plus sign gives a retrograde vernier). If Eq (22) is not satis-
fied, the resulting device will be a folded (non-monotone
sequential) vernier.

L

5. The least count of a vernier is given by .E_EE__ .
sp Vv

6. For a given vernier family (same least count) a folded

vernier is related to a monotone sequential vernier by

N =t N! (32)
sv sv

The factor t is an integer and is determined by the linear in-

determinate equation
N, t=-Nu=231 . (35)

t 2 4

where u is a positive integer.
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III. Residue Number Systems

As mentioned earlier, residue number systems have char-
acteristics that recommend them for use as computer codes.

The development of these novel number systems from congruence
theory will be briefly examined in this chapter. Unlike the
preceding and succeeding chapters, this chapter presents
material that is readily available in other works. The reason
it is included in this paper is to furnish some background for
the reader who is not familiar with residue numbers. It should
be understood, however, that the material presented here is very
limited in scope and is developed for specific application in
this paper. 1In particular, the computer applications of these
number systems will not be discussed. The reader interested in
this aspect of residue numbers is referred to the works of Aiken
and Semon (Ref 1) and Garner, et al. (Ref 2).

Residue number systems include both fractional and integer
number systems. Though the fractional systems allow greater
flexibility with respect to the problem of scaling, residue
qu-ber systems are more naturally interpreted as integer asystems.

This paper will consider only the integer interpretation.
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Congruences

Though the idea of congruences goes far back into history,
it was Gauss who formalized the concept and introduced the
terminology and symbolism that are in use today. He defined
two integers x and y as being congruent for the modulus m when
their difference X -y is divisible by the integer m.
Expressed in another way, if the two integers x and y have
the same remainder after division by m, they are said to be

congruent modulo m. Gauss expressed this definition symboli-

cally by

xSy (mod m) (40)

which is read: x is congruent to y modulo m. The following

examples illustrate this concept:
25 & 40 (mod 3) 25 % 16 (mod 3)

25 %1 (mod 3) 25 & -2 (mod 3)
Many of the basic properties of congruences are the same
as those of ordinary equalities, and the rules for operating
with congruences in many ways resemble those used for combining

equations. However, because of more familiarity with them, most
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people prefer to work with equations rather than congruences.
Aiken and Semon have introduced a notation that satisfies this
preference (Ref 1: Chap. I, p. 2). Their notation is based on

the fact that a congruence states that the equation
X =mq +Yy (41)

is valid for some value of q, where x, y, m, and q are integers.
The factors q and y are the quotient and residue (remainder)
after division of x by m« If q has such a value that

0Ly < m, then y is said .to be the "least positive residue'.
Using this idea of least positive residue, Aiken and Semon have

rewritten Eq (41) as

X =m [—:—] + lxl.‘ (42)

least positive residue of x mod m

where: le-

largest integer smaller than or equal

to x/m

—
.
P
]

It should be noted that le- is uniquely determined when x is
given; however, the converse is not true since |x|. represents

all integers with reaidue ]xl- after division of x by m. This
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relationship between x and len may be expressed in the language
of modern algebra as a many-to-one correspondence of the natural

integers x to the least positive residues of x mod m.

Chinese Remainder Theorem .

In order to have a coherent number system based on residue
numbers it is necessary that x and lxlm be in one-to-one corres-
pondence. There exists a theorem in number theory that gives
the necessary and sufficient conditions for obtaining this corres-
pondence for a finite set of natural integers. The firast known
application of this theorem dates back to about the first century
A.D. and is found in a Chinese arithmetic by Sun-Tse. As a result,
this theorem is often referred to as the Chinese Remainder Theorem.

The Chinese Remainder Theorem states that if a system of
simultaneous congruences is given where the moduli m, are rela-

tively prime in pairs and
_n
M= ' ‘ mi (43)
i=1

then the set of n least positive residues \xlm uniquely
’ i 3

determines the integer x in 0 < x < M. The solution for

such a system of congruences is given by
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x 8 kiai lxl.i (mod M) (44)
i=l
A a M_
where m 2 5 (48)
kK. & 1 (mod m.) )
™1 = mo -1 946

The proof of this theorem may be readily found in any standard

text on number theory (Ref 3:244-246).
With the notation of Aiken and Semon, the congruences of

Eqs (44) and (46) may be transformed into equalities. Equation

(44) becomes

. A ’
1=} M
which may be written as
n_ - P
x = k |x|_1 - W(x)M (48)
i=1

where W(x) is an integral function of x (Ref 3:86). Equation

(46) becomes

s

k, = l \ | (49)
»m

n
iilm,
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Residue Numbers

From the Chinese Remainder Theorem it is immediately
apparent that a number system based on least positive residues
can be constructed where

x +i>(lx\ml, \x\mz, Sazh \xlm ) (30)
n

However, in order to have a one~to-one correspondence of x to

(Wl , Ixl_, «ecy Ixl_ ) it is necessary that x be bounded.
m, n m

2
The bounds as stated in the Chinese Remainder Theorem are
0 £ x <M. An example of such a number system where

x <« ( |x}| \x|3. ‘x\s) is given in Fig. 10.

20
For certain applications of residue numbers there appears
to be an advantage in having a system where the bounds on x
are such that they include numbers other than the least positive
residue. To accomplish this change in the range of x, it should
be noted that in a residue number system x and x + nm, where
n is an integer, may be regarded as equivalent. Thus, to obtain
the desired range,it is only necessary to redefine W(x) so that
K € x < M+K. An example of a residue number system where

x é-)(lxlzy\xls. lxls) and - 15 £ x €15 is given in Fig. 11.
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“"‘“(l*lg' |x|50 |xlg)
0< x < 30

n A Y
X s ki-il"l-‘ - (MeK) W(x) k:l-i =1 (mod -1)
i=1

15 k) 5 1 (mod 2) k, =1

10k2§1(-od3) kzn

6 ky # 1 (mod 5) ky = 1

x =18 |x|, + 10|x|3 +6lxly - 30 W)
L =2 -, =3 m =5
0< x <30
x |x[2 |x|3 les Wix) || x |‘|2 |x|3 |x|5 W(x)
| ————
0 0 0 0 o {lis] 12 0 o] o
1 1 1 1 1 f{lie] o 1 1| o
2 0 2 2 1 lliz ]| 2 2 2 | 1
3 1 0 3 1 Jlief o 0 3] o
4 0 1 4 1 1] 1 1 4 | 1 |
5 1 2 0 1 ll20] o 2 o] o
6 0 0 1 o. |] 21 1 0 1| o
7 1 1 2 1 Jl22] o 1 2 | o
8 0 2 3 1 ll2al 2 3|1
9 1 0 4 1 Jl2e] o 0 4| o
10 0 1 0 o llas] 1 1 ol o
11 1 2 1 1 Jll2ef o 2 1 | o
12 0 0 2 o ll2z] 1 0 2 | o
13 1 1 3 1 _ll2s| o 1 3] o
14 0 2 4 1 ll29] 1 2 4 | 2
Fig. 10

39




n
A A
X = E lcililxl.l1 - (M+K) W(x) kini £ 1 (mod -‘)
i=]
15 k1 =1 (mod 2) kl =1
10 k2 z 1 (mod 3) k2 =
6 = 1 (mod 5) k3 =1
15/xl, + 10 |xl3 + 6 Ix]g - 30 W(x)
= 2 llz = 3 m_ =95
-15 € x <15
x [x|2 |x|3 |x|5 Wix) || x |x|2 I x| |x]5 w(x)
0 O 0 0 0 -~15 1 0 [¢) 1
1 1 1 1 1 -14 0 1 1 1
2 0 2 2 1 -13 1 2 2 2
3 1 0 3 1 -12 0 0 3 1
4 0 1 4 1 -11 1 1 4 2
5 1 2 0 1 -10 0 2 0 1
6 0 0 1 0 -9 1 ) 1 1
7 1 1 2 1 -8 0 1 2 1
8 0 2 3 1 -7 1 2 3 2
9 1 0 4 1 -6 0 0 4 1
10 0 1 0 0 -5 1 1 0 1
11 1 2 ) § 1 -4 0 2 1 1
12 0 0 2 0 -3 1 0 2 1
13 1 1 3 1 -2 0 1 3 1
14 0 2 4 1 -1} 1 2 4 2
Fig. 11

Residue Number System For
x <—> ( |x|2, |x|3, Ix‘s)

-15 < x <138
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IV. Two Scale Residue Verniers

The preceding chapters have presented a theory of conven-
tional vernier devices and have briefly explained the concept
of residue numbers. It will now be shown that these seemingly
unrelated subjects are, in fact, very closely related. Also,
it will be shown that a conventional vernier device, with aslight
modification, may be used to provide direct conversion from
decimal nd-ber- to residue numbers. The author has chosen to
refer to the modified device as a ''residue vernier'".

The relationship between verniers and residue numbers will
first be developed for the simplest case - a vernier device
congsisting of two scales and a residue number system based on
two moduli. The theory resulting from this c‘-c will then be
used as the framework for developing a general theory for multi-

scale residue verniers.

Definitions and Conditions

For the development of the theory of conventional verniers
it was necessary to consider the main scale as being made-up of
two scales, a p}ilary scale and a secondary scale. Since the
function of residue verniers is not to measure length, the view-
point of two scales is not required. 1In fact, it will be con-

ceptually advantageous to consider the main scale as being a
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cyclic scale having exactly the same characteristics as the
vernier scale. To decrease the possibility of confusion be-
tween these different interpretations of the main scale, the
main scale of the residue vernier will be referred to as the
"“statid' scale.

In order to have a number system based on integers, it
is essential that the relative displacement between the static
and vernier scales be expressible in terms of integers. To
provide this relation a basic length different from that used
in Chapter II is needed. In that chapter Lp, the length of
one primary scale division, was basic. From Eq (8b) it may
be smeen that if the basic length is considered to be the least

L

count, —E-E-’ rather than Lp. then x will be an integer.
sp Vv

Therefore, the unit length based on the least count will be

used for residue verniers.

With the above conditions in mind, the following defini-

tions are given:

N = number of intervals on the static scale per static
scale cycle

N_ = number ofiihtervall on the vernier scale per vernier
scale cycle

va = number of intervals on the static scale per vernier

scale cycle
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= unit length (least count)
= length of a static scale interval
= length of a vernier scale interval

length of a static scale cycle

= length of a vernier scale cycle

' d & e
"

It should be noted that N. and LB for a residue vernier
equal respectively N.p and LP for a conventional vernier. Also,
the unit length for a two-scale residue vernier equals the least

count of a conventional vernier:

N_N (51)

It must be emphasized that Eq (51) only holds for two-scale
réliduo verniers. Later development will show that a different
relation is required for multi-scale devices.

The factors Nv' va' L.,.and Lv have the same meanings
as they had for conventional verniers. Unlike ceaventianal
verniers, however, the principal requirement for the design
of residue verniers is that ﬁ. and Nv be relatively prime.
This is an important change, and the reader should kcdp~1t in
mind so that he may better understand the subsequent develop-
ment. The reason for this change, though not apparent mnow,

will become obviéus later on.’
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Another innovation is based on the fact that the choice
of the line to serve as the fiducial is not completely axiomatic.
This is true because Nsv is stipulated to be an integer. This
stipulation results in the lines on the vernier scale a distance
Lv apart having simultaneous coincidence (e.g., Fige. 5, 6, and 7).
As a result, the line a distance LV from the fiducial may as
easily be coded zero as Nv' Hence, the range for v, as given

by Eq (18) for conventional verniers may be changed to
0< v, < Nv (52)

With this condition it may'bc seen that the two lines bounding
a vernier scale cycle may perform the function of the fiducial
equally well. This concept has little practical value for
conventional verniers; for residue verniers, however, it pro-
vides a key to the understanding of their operation.

In Fig. 12 three linear verniers are illustrated, each
with two fiducials. The properties of interest are the diﬁ-
tances between the beginning of a static scale cycle and the
fiducials. Examination of the three verniers shows thﬁt the
two distances, xLx and x'L&. are not necessarily equal.
In order for these distances to be equal, it is necessary that

the length ?f the vernier scale cycle Lv and the length of the
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: Ly
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lx ; L, Lg
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Fig. 12

Verniers With Two Fiducials
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static scale cycle Ls have an integral relationship such that

bL, = alg (53)

where a = 1’2’3.’ LN ] md b = 1'2'3' LR

For the development of the theory of two-scale residue

verniers the factor b will be assumed to be one, so
Ly = alg (54)

In the subsequent devclop-ént of the theory of multi-scale
devices, b will be allowed to take on other values.
From the definitions given at the beginning of this section

and from Eq (51), it may be seen that

Ly = NJL_ (55)
Lg = NJL_ (56)
Noob. = NJL, - (57)

N = aN (58)

46
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Thus, when a vernier device's parameters are such that Eq (38)
is satisfied, the two fiducials will give equal readings

(x = x'). As will be seen later, this equality is a necessary
condition for the proper -operation of residue verniers.

In the above development there has been no'explicit
limitation on the factor a other than it has to be a positive
integer. There is, however, an implicit condition that a must
satisfy which does place limitations on the values it may assume.,
As was found in Chapter II for conventional verniers, it is
necessary for two-acale residue verniers that Nv and va be
relatively prime so as to provent ambiguity of scale readings.
The standard notation used to express the  idea of relative

primeness is

(Nv’ N.v) =1 (59)

which is read: the greatest common divisor of Nv and N.v is
one (Ref 4:47). A vernier device whose parameters satisfy the

conditions of both Eqs (58) and (59) has

(Nv. a N.) =1 . (60)

Thus, a may no'longnr be any pblitivo integer, but may assume

only those values which make the product a.N. relatively
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prime to N (e.g., 1f a = N, then Eq (60) doesn't hold).

In any standard text on number theory it is shown that
when a number is relatively prime to each of several numbers,
then that number is also relatively prime to the product of
the several numbers (Ref 4:44). As previously mentioned,

residue verniers require that
(Nv' N.) =21 (61)

Given this relation, a sufficient condition for satisfying

Eq (60) is

(Nv, a) =1 (62)

Thul, if a vernier device's parameters ( a, Nv’ and N. )
satisfy the conditions of Eqs(61) - and (62), this will be
sufficient for Eq (60) to be satisfied, and it follows from
Eq (58) that x = x'.

With the above definitions and conditions, it is now
possible to show the relationship between vernier devices

and residue numbers.

The Vernier Scale

A distance equation based on the inside dimensions of
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Fig. 13 may be written such that

xLx - hL. + -Li - nLv (63)

where,by the definition of Lx' the factor x is an integer.
Equations (51), (54), (53), and (56) may be appropriately

combined to obtain

L NN L

Li = N. = ”. = Nva (64)
Ly alg

L, = N, = X, =aNL (65)

Substitution of Eqs (64) and (65) into Eq (63) gives
x s hN_ «+ (-Nv - n.N') (68)
Taking the lead from Chapter II, the right-hand term is
defined as V,+ the numerical code given a line on the vernier

scale. Thus

‘v, =mN_ - naN_- = q(n)N - anN - (e7)

where: ' n = 0'1.2' o0y N.V (67)
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q(n) = = - an (69)
N = N. - NV (70)
and from Eq (52) 0<v <N, (82)

With the above definition, Eq (66) becomes
v, =X~ Nv!‘(x) (71)
where 0<v <N, h = F(x)

From Chapter 111 it is pol-sible to write
Ix|y = x - N f(x) (72)
v

where 0< lxlN <N,
: v

Comparison of Eqs (71) and (72) shows that va satisfies the

conditions for the least positive residue of x mod Nv; hence,

v, = lx‘uv (73)

The Static Scale
An equivalent relation to that given in Eq (73) may be

developed for the static scale by again writing a distance

s1
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equation. This equation, however, requires the use of the

outside dimensions in Fig. 13. Hence,
x'L_=dL_+ eL - fL_ (74)
Substitution of Eqs (64) and (65) into Eq (74) gives
' -
x!' = daN- + eaNs va (75)

From Fig. 13 it may be seen that the factor f determines
the number of static scale intervals from the beginning of the
cycle much in the same way ;n n determines the number of vernier
scale intervals. lowever, there is one important difference.
The factor f measures the intervals in a direction opposite to
the direction in which n determines vernier scale intervals.
From a practical viewpoint, it wodld be more convenient for
the two coding sequences to code their respective scales in_

the same direction. From Fig. 13 it may be seen that

n'L = N.L - fL (76)

where n'L. is the distance from the beginning of the static
scale cycle measured in the same direction as n measures vernier

scale intervals. Hence,
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f = x. -n' (77)

To accomplish the desired change, Eq (77) may be substituted

into Eq (75), which gives

x' = d.N. + (ea - N, + n') N, - n' (N' - Nv) (78)

Ir G(x') = da (79)
q(n') = ea - N, +n (80) .

NN -N, (70)

then ' x' = G(x')N. . [q(n') N, - n'N]_ (81)

The same arguments used in éhaptcr I1I to develop the
vernier acale coding sequence from a distance equation may
be applied t'o Eq (81). If ln.. 1qhdoﬁ.no.d as the nu-ericalv
value given a static scale line n' intervals from the be-

ginning of the cycle, then

| {;n.} - {ata®) ¥, - n'¥} (o)

where B' = 0;1,3, ceo .N.-d 05 8 < N.
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The substitution of Eq (82) into Eq (81) gives
8, =x' = N.G(x') (83)

Thus, from residue number theory it may be seen that

O = 'x'lN

. (84)

-

The Two-Scale Residue Vernier

It has been previously shown that for a vernier device
with parameters which satisfy Eqs (61) and (62) the relation
x = x' will hold. For such devices Eqs (71) and (73) and

Eqs (83) and (84) show that when there is coincidence of scales

x = Ixly + N F(x) (85)
v

X = |x|"' + N.G(x)

- (86)

where ‘x‘N And \x‘N are the readings of the scales at
that coincid:nco. 3

The Chine.p Remainder Theorem states that a set of equa-
tions like Eqs (83) and (86) uniquely determine x in

0< x ‘N.Nv ir N. and Nv are relatively prime. Thus, the




GE/REE/63-7

scale readings of a vernier device constructed with appropriate
parameters and properly coded will at coincidence provide the
least positive residues of x  modulo N. and modulo Nv:

x «>( |x| Ixly ) (87)

L)
Nl v

where 0 x< NN
- sV
The sufficient conditions and requirements for the design
and construction of a two-scale residue vernier given a unit
length Lx' the relation b=1, and the parameters "'Nv’

and N. are as follows:

10 (N'| Nv) =1 ) (61)
where as=s1l,2,3, ... And N.v = aNs (58)
3. ' L, =NL (64)
4. 3 LV = N.va = ‘N.Lx (63)

s. | {vn's = iq(n) N, - .nN} v (67)
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where n:O.l'z. es ey Nv and 0<Vn< Nv

6. {-n,} . {q(n') N, - n'N} (82)

where n' = 0’1'2' seey N. and 0L 'n. < Ns

The first two relations enfablilh the sufficient conditions
for the design of a two-scale residue vernier; the second two
relations determine the physical structure of the device; and,
the last two relations providé the coding sequences for the
static and vernier scales. " All of the relations given abbve
were developed with the assumption that the factor b in Eq.(53)
was equal to one.

In Figs. 14, 15, and 16 some examples of residue verniers
are given Qhere a=1,b =1. To better visualize the opera-
tion of the devices shown in these figures, it is suggested
that the reader transfer the vernier scale to the edge of a
piece of paper. The paper may then be slid along the static
scale to obtain any desired coincidence. A reference scale
indicating integral multiples of the unit length is placed
next to the static scale in each figure for the reader's con-
venience. Al-o} a residue number conversion table is given

in Fig. 17 for easy reference.
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In addition to the operation of residue verniers there
are some other precepts that may be obtained from these figures.
First, when ax1li( =1), the factor N determines the type
of scale ~ direct, retrograde, or folded - for residue verniers
in the same manner as it did for conventional verniers. Second,
the length of the static scale does not need to be greater than
twice the length of the vernier scale in order to provide all
the residue numbers for which x is unique.

Figure 18 presents a different constructional approach for
residue verniers. In this figure the linear vernier illustrated
in Fig. 15 is re-presented as a circular residue vernier. In
order to visualize its operation the shaded circle in the center
can be considered as a disk mounted on a flat plato in such a way
that it is free to rotate. Hence, the disk serves as the vernier
scale and the plate serves as the static scale. As in Figs. 14;
13, and 16, a scale indicating the integral multiples of the umit
length is placed next to the static scale for convenient reference.
The main difference between the circular and linear devices, be-~
sides the obvious physical difference, is that the circular device

requires a static scale only of a length equal to that of the

Vernier scale.

The Multi-Cycle Residue Vernier
When a _;L ) | a slightly different configuration from those

shown in Figs. 14, 15, 16, and 18 results. In each of those

8?7
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Fig. 14
Direct Residue Vernier

x |x|5 x| g
GIVEN PARAMETERS: 0 — -
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x 8 v -
5_;: i
REQUIREMENTS : = |
1. (N, N) =(5,6) =1 T g
3. L. = 6(1/8") = 3/4" :
4. L - " = " e
. = 5(1/8") = 5/8 152 3
5. nE
NV = 6 N = =1 20_: 4
n q(n)Nv-anN v q(n) — 4
Sis 25— 2
0 || 6q(0)+0 0 0 ]
1| 6q(1)+1 1 0 . 1o
2 | 6q(2)4+2 2 0 30— o
3 || 6q(3)+3 3 0
4|l 6g(4)+4 4 0 \
5 || 69(5)+5 5 0
6 || 6q(6)+6 (o} -1
2
6. .
N, =5 N = -1
3
n q(lg)N.-n' N |s, q(n')
0 || 5q(0)+0 o 0 4
1l 5q(1)+1 1 0 '
2 || 5q(2)+2 2 0
3 Il 5q(3)+3 3 0 Lo
4 || S5q(4)+4 4 o
5 || 5q(3)+8 o -1
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GIVEN PARAMETERS:
L = 1/8" N =38 N_=4 as=1l

x - -/ x les |‘|4
0 ——
REQUIREMENTS : i
1. N., NV = (5, 4) =1 7] 4 .
s —
2, (N,a)=(51)=13N_ =N =35 3 3
3. L. = 4(1/8") = 1/2% IO“': 2
4. L= 5(1/8") = 5/8" E 2
s. . ‘5—_" { !
N, =4 N=1 .
20— |- (0]
n q(n)Nv-anN LA q(n)
4
0 4q(0)-0 0 0
1 4q(1)-1 3 1 3
2 4q(2)-2 2 1
3 4q(3)-3 1 1 2
4 4q(4)-4 0 1
t
N, =5 N=1 'Q"",
® || q(n)N_-n"N s laln')
0 8q(0) -0 o |o
1 8q(1)-1 4 1
2 8q(2)-2 3 1
3 {| 8q(3)-3 2 |
4|l 5q(4)-4 1. |1
S 8q(8)-5 o 1
Fig. 18

Retrograde Residue Vernier
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GIVEN PARAMETERS: .
Lx = 1/8" NB =5 NV =7 a=1 :
5__
REQUIREMENTS : |
1. (Ns, NV) = (5, 7) =1 =
2. (N ,a) =1(51)=1;N_ =N =35 10—]
3. L, = 7(1/8") = 7/8" i
4. L = 5(1/8") = 5/8" ]
. (1/8") / o
—
5. N,=7 N=-=2 =
20—
n q(n)Nv-.nN v, q{n) -
0 79(0) +0 0 0 25—
1 7q(1)+2 2 0 7
2 7q(2)+4 4 0 30—]
3 7q(3)+6 6 0 .
4 7q(4)+8 1 -1 =
5 7q(5) +10 3 -1 35—
6 7q(6)+12 5 -]
7 7q(7)+14 o -2
6. -
N=5 N = =2
n' Trqﬁ!)Ns-n'N s, | g(n)
0 5q(0) +0 0 0
1 5g(1)+2 2 0
2 || 5q(2)+4 4 0
3 59(3)+6 1 -1
4 5g({4)+8 3 -1
5 5q(5)+10 o -2
Fig. 16

Folded Residue Vernier
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Fig. 17
Residue Number Conversion Table
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figures it may be seen that the length of the vernier scale
cycle is equal to the length of the reference scale which gives
a complete cycle of the values of x. Examples of devices for
which a = 1 are given in Figs. 19 and 20. In these
figures the length of the vernier scale cycle is equal to a
times the length of the rof.renco scale cycle. Since it takes
a reference scale cycles to equal the length of one vernier
scale cycle, devices where. a o 1 are referred to as
"multi-cycle" residue verniers.

Examination of Figs. 19 and 20 and of Eq (67) reveals that
the parameter N no longer completely determines the scale type
for the vernier scale. To‘obtain monotone code sequences on the
vernier scale when a =& 1, Eq (22) of Chapter II must be

modified to

aN = rN_ T 1 (88)

As before, the minus sign glvei a direct scale, and the plui
sign gives a retrograde sacale. If the device parameters are
such that Eq (88) doesn't hold, then the scale will be of the
folded type. It has been previously shown that the ratio of

the scale lengths needed to provide uniqueness approaches two

when a = 1. From these figubg. it may be seen that as a

increases this ratio of scale lengths approaches one. Thus, if
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GIVEN PARAMETERS:
szl/lﬁ" NB=5 Nv=4 a=3
. x |xlg |xl,
REQUIREMENTS : 0— Fg -
1. (N, N) =(5,4) =1 s— [+
2. (NV, a) = (4, 3) = 1 va = aN. =15 w_E_ -
3. L, = 4(1/16") = 1/4" '5__5_ ‘T—
4. L =15 (1/16") = 15/16" =
20— R
4
5.
N, = 4 N=1 z 2
n q(n)Nv-anN i q(n) i
©
0 49(0)-0 0 0 .
1 || 4q(1)-3 1 1 —3
2 4q(2)-6 2 2 .
3 4q(3)-9 3 3 .
4 4q(4)-12 0 4 I
4
3
6. | 2 |
Ns =8 N =1 .
o' | q(n)N_-n'N| s, | q(n) e
0 5q(0)-0 0 0
1 Sq(1)-1 4 ¢)
2 5q(2)-2 3 0
3 5q(3)-3 2 0
4 5q(4)-4 1 0
5 5q(38)=-5 0 1
Fig. 19

Three~Cycle Residue Vernier
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Circular Three-Cycle
Residue Vernier
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provide uniqueness

provide uniqueness

then for a linear residue vern

1<

ier

Nsl‘s

1)

<2

= total number of vernier scale cycles required to

N = total number of static scale cycles required to

(89)
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V. Multi-Scale Residue Verniers

The Chinese Remainder Theorem shows that the range in
which x has a one~to-one correspondence in a residue number
system is determined by the product of the moduli, providing
the moduli are relatively prime in pairs. Thus, to extend
the range of this correlpdndoncc it is necessary either to
increase the value of the moduli or to increase the number
of the moduli. The previous development has shown that
increasing the value of the moduli of a number system asso-
ciated with a residue vernier presents no theoretical problems
(there could be some practical difficulties due to 1ncreising
dimensions). The following development will pertain to the
latter method of increasing the range of one-to-one corres-
pondence, that of increasing the number of moduli.

To increase the number of moduli of a number system used
with a residue vernier necessitates the addition of acales
to the device. This addition of scales may be accomplished
in three ways: the addition of static scales, the addition
of vernier scales, or the addition of both types of scales.
For convenience, each of these three methods will be treated

separately.
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Multi-Static Scale Device

If -evéral two-scale residue verniers are constructed so
that they have equal unit lengths and the same vernier scale
parameters, it is apparent that their static scales could be
placed together and the device would function properly. This
concept of a multi-static scale device being a composite struc~
ture of several two-scale devices will be used in the following
development. The advantage of this approach is that the deve-
lopment problem is reduced to only determining what, if any,
congtraints are placed on the two-scale device relationships
as a result of attaching additional scales.

Device Parameters. For a multi-static scale device yith

a common unit length'and with one vernier scale, the factors
L*. LV' Lv' and Nv have the same meaning as given them in Chapter
IV. The static scale parameters, however, require some modifica-
tion since there are several scaiel to consider. The change
required is the addition of a sub-subscript which identifies

the pertinent scale, i.e., N.j. (Nsv)j' L.j. and sz where

j = 1'2. o0 0 ._c
When the unit length is common and each static scale operates

with a common vernier scale, it follows from>Eq (64) that

NL =1L = L (90)
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Also, it follows from Eqs (37) and (90) that

Yy =08, (91)

Thus, the parameters Nsv and Lh are common for all the static
scales. This fact could have also been derived from practical
considerations since a residue vernier requires coincidence of
scales for proper operation.

It was shown in Chapter IV that residue verniers require
x = x'. From Eq (53) of that chapter it may be seen that the
condition needed to satisfy this requirement for multi-static

scale devices is

L, = L | (92)

Ij .j

For multi-static scale devices b will again be assumed to equal

one. Hence, Eq (92) may be reduced to

N = a.N (93)

where the implicit restrictions on a, result in

3

(.5 v N =1 (94)

Ir | (Nv, N.j) =1 . (953)
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then from the theorem in Chapter IV concerning relative prime

numbers a sufficient condition for satisfying Eqs (93) and (94)

is
CvS
%3 TN, (96)
3
where s 2 1={ N (97)
i=1 %

and Cv is defined as a positive integer which satisfies
(Cv, Nv) =1 (98)

Substitution of Eq (96) into Eq (95) gives
N_=CS (99)
v

From Eqs (57), (90), and (99), it may be seen that

: N L
L = svV_8
v

; C_sL (100)
a v x

Codiny Sequences. The above relations determine the: con-
straints placed on the physical structure of a one vernier scale,
multi-static lc;lo residue vernier. It is now necessary to de-
termine what changes, if any, need to be made to the coding se-
quenceledc§clopod for the two-scale device.

Since the multi-scale device may be viewed as a composite

structure of several two-scale devices, it is permissible to
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use the distancc equations developed in Chapter IV. Hence,

xLx = hL. + -L. - nLv - (63)

Substitution of kqs (90) and (100) into Eq (63) gives

X = th + (-Nv - nCvS) (101)

Thus, from prior logic the coding sequence for the vernier

scale is
. {,n'} "{q(n) N, - nCvN} ' A(mz)
where: n = 0,1,2, ...,'Nv 0 < vn'< ﬂv
q(n) = m - nC_ ‘ N=S- N

The other distance equation from Chapter IV gives

(74)

[ ] -
x Lx = dij + eij ij.

Substitution of Eqs (77), (80), and (100), into Eq (74) gives

e, C 8 n,8
x' = djcvs + {(_;1‘_1- -N_ 4 _ﬁl—) N, - n, (s - Nv)} (103)
5y sy h |
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(the prime has been removed from n' since n and n' have the same

basic meaning). Thus, the coding sequence for the static scales

becomes
{'“3} a {q(nj) st = nJN} (104)
where: n, = 0,1,2, ..., N‘J o< "‘j < N'j
q(nj)=-:!%:—vs—-Nv+-%.ﬁ— N=8S-N_
J J

From arguments similar to ‘those used in Chapter IV, it follows
from Eqs (101) and (102) and Eqs (103 and (104) that at a coin-

cidence of scales for a multi-static scale residue vernier

x = x|y + N F(x) (105)
v
X = |xIN'3 + Ny Gy (x) (106)
3 3
. ac_s
where : F(x) = h G,(x) = A4
. 3 N
*3

Hence, by the Chinese Remainder Theorem

xq—oil:lu'. |x|“..lx|u.2. oTe ks |xl~ ) (107)
) § »n
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where 0 £ x £ NS

Figure 21 gives some simple examples of one vernier scale,
multi-static scale residue verniers. It may be seen in these
figures that the parameter Cv determines the cyclic nature of
the reference scale with respect to the vernier scale, just as
the factor a did for twé-lcnlo devices. Also, comparison of
Fig. 21(a) and Fig. 21(b) indicates that from a practical view-
point it may be advantageous to let Nv be the largest moduli
of the number system used since this allows fewer intervals on

the static scale.

Multi-Vernier Scale Devices

Device Parameters. In the preceding section it was conven-

ient to consider the multi-static scale device as a marriage of
several two-scale devices. Tbi-'concept will also be used for
developing the relationships for a multi-vernier scale device.
However, there is a -odification that must be made. In all the
previous developments the integer N-v has heen used as the
connecting link between the static and vernier scales. For
iulti-vernier scale devices this parameter has little meaning
since there are several vernier scales to be considered. Hence,
it is nocelsnfy to define a new parameter more suitable for one
static scale, multi-vernier scale residue verniers. This para-

meter is
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(Nv-)J = number of intervals on the it! vernier scale

per static scale cycle

where i 21,2, eees k

This change in reference from the vernier scale cycle to
the static scale cycle (Nav to Nnv) also necessitates a change
in the unit length. In the development for a two-scale device the

unit length was found to be given by

(51)

If the vernier and static scales were physically interchanged,
then Eq (51) would become

p 4 NN
sV

(108)

A moment 's thought shows that for a two-scale device the change
in the :parameters from N.; to N" is equivalent to the interchange
of scales. Hence, Eq (108) gives the unit length for a two-scale
device when the static scale is used as a reference.

When several vernier scales operate wih one .tatic scale

and there is a common unit length, it follows from Eq (108) that

NL.LV=L‘ (109)
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Also, it follows from the definition of (st)i and Eq (109)
that
(N ) Nels Nela - N (110)
sv'i © L T L~ % Tve

Thus, the parameters st and Lv are common for all the vernier

scales.
From Eq (53) of Chapter IV, it may be seen that the con-
dition necessary for a one-static scale, multi-vernier scale

residue vernier to satisfy the requirement x = x' is

= alL (111)

For multi-vernier scale devices the convenient assumption is

that a = 1. Hence,

biLvi = Lg (112)
Substitution of Eq (110) into Eq (112) gives
NVOLV '
biNv L, = N_ (-—-ﬁ-—-) (113)
i s
which reduces to
bi"vi = N (114)
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Just as there was an implicit restriction on the factor a,
s0o is therc.a restriction on the values b may have. This
restriction on b may be developed from the condition required
to prevent ambiguity of scale readings by logic very similar
to that used for a. For devices using the static scale as

a reference, the condition required to prevent ambiguity is

(N., Nv.) =1 (115)

The substitution of Eq(114) gives

(N..'biNvi) =1 (116)
ir (N,N ) =1 (117)
8 Vi
and (N-, bi) =1 (118) '

then from number theory (Chapter 1IV) Eq (116) is satisfied.
Since the residue number system used with a vernier device
requires the cohdition expressed by Eq (117), a sufficient
condition for satisfying Eq (116) is that bi‘b. relatively

prime to N.. ﬁonco. b qu-t'qot only satisfy Eq (114), but

i
must also satisfy Eq (118). A sufficient condition for meeting
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these requirements on b1 is

C.V
Vi
k
where ve I [ N (120)
i=l Vi

and C. is defined as a positive integer which satisfies

(c'. N‘) =1 (121)

Substitution of Eq (119) into Eq (114) gives
N =CV (122)

From Eqs (108), (110), and (122) it may be seen that

Nvalv
L = N = C'VLx (123)
s

Coding Sequences. The above expreasions for the device
parameters -ay.now be applied to the basic two-scale device
61ltunco equationi in order to develop the coding sequences.
Hence, .

xL_ = h

L, ¢+ -1L - n,L . (63)

i s iv
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Substitution of Eqs (109) and (123) gives
x = h,CV + (-iC'V - niN') (124)

As before, the right-hand term provides the coding sequence.

‘thus, for the vernier scales

{r“i} = {?(ni) Nvi- niN} (125)

where: 1'1:l 2 0,1,2, os0ey Nv (0] évn < N
i i vy
V (m,C =n,)
is 1
q(ni) = iv N = N. -V
i

The other distance equation gives

, , _
x Lx dL_ + eL - fL_ (74)

The substitution of Eqs (?77), (109), and (123) results in

x! = dN- + [(o - C.V + C.N) N' = nC. (N. - V;]' (126)

where the prime has been dropped from n'. Hence, for the static

scale the coding sequence is

(4]
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{sn} = {?(n) N, - nCsN} (127)
where: n = 0,1,2, .., Ns 0L s «N
qin) = e = CsV + Csn N=N -V
From prior logic it follows from kqs (124) and (125) and

Egs (126) and {127) that at a coincidence of scales for a one

static scale, multi-vernier scale residue vernier

x=lxly, + N Fx (128)
vi i
x = x|y + N, G(x) (129)
8
h,C_V
where Fi(X) = Nv G(x) = d

Thus, by the Chinese Remainder Theorem

xd—p(lxlN > IxINv \ leuv 5 odBc leN ) (130)
1 2

8 Vk

where 0 £x< N.V
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Fieure 22 gives some simple examples of multi-vernier scale
residue verniers. It should be noted that CB also specifies the
cyclic nature of the reference scale, but in a different way
than does Cv' The parameter Cv determines the number of reference
scale cycles per vernier scale cycle, whereas Cs determines the

number of reference scale cycles per static scale cycle.

Multi-Scale Uevices

Device Parameters. Sufficient insight has now been achieved

to allow the generalization of the residue vernier relationships
for a multi-vernier scale, multi-static scale device. A pre-
requisite for the design of the multi-scale device is a common

Lx for all scales, a common Lv for the vernier scales, and a
common Ls for the static scales. These common lengths are needed
to insure the coincidence of all scales when the relative dis-
placement is integral multiples of Lx' With this prerequisite

it may be seen from Egs (100) and (123) that

LV LS
v 8
Hence, L, = C SL_ (132)
L = CVL ‘ (133)
s 8 X

However, before these expressions are complete it is necessary

to determine if there has been any change in the constraints




GE/EE/63-7

placed on Cv and C. as a result of attaching additional scales.
The dofor.inntion of the constraints on Cv and C. requires
the use of two additional design prerequisites: the relation
x = x' must be satisfied and the device parameters must be of
a value that prevents ambiguity of scale readings. From Ekq
(33) it may be seen that the necessary condition for meeting

the relation x = x' is

biLV = aJLs (134)

which may be rewritten as

binv‘Lv = .JN'JL' (135)
In prior development it has been possible to reduce this ex-
pression by use of the parn-eter; N-v and Nv-' lxanination of
Figs. 21 and 22 reveals that for a multi-scale device these
parameters are no longer integers; therefore, they are of little
use in this generalized development. The length factors, howovér.
may be removed from Eq (135) by the substitution of Eqs (132 and
(133).
cvs -'

thvi .jN.JC.V (136)




GE/EE/63-7

Figure 23 illustrates a vernier acale and a static scale
of a multi-scale device. It may be seen from this figure that

the condition necessary to prevent ambiguity of scale readings
is

(a,N , b

iVa 1Nv ) =1 (137)

J i

Since the Chinese Remainder Theorem requires that the moduli

be relatively prime in pairs, it is necessary that

(N, v N_) =1 (138)
b | J
C S
1f a, = —— {139)
J NS.
’ J
where (Nv o Cv) =1 (140)

then from Egqs (138) and (139)

(Nv s, aN ) =1 (141)
i 98
CsV
Also, if bi = N (142)
i
where (Ca. ajNBj) =1 (143)
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then from Eqs (141) and (143)

(biNvi’ astj) =1 (144)
Hence, the expressions given in Eqs (139) and (142) satisfy Eq
(126), and Eqs (140) and (143) along with Eq (138) form a set
of sufficient conditions for satisfying Eq (137).
There is another set of sufficient conditions that may be

developed. If

CsV
bi = "N (142)
i
where (C ,N ) =1 (145)
8' 8.
J
then from Eqs (138) and (145)
(biNV.' NB.) =1 (146)
1 J
CvS
Also, if a, = (139)
J N,
b
where (biNv . Cv) =1 (147)
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then from Egl'(l46) and (147)

(b‘Nvi. QJNSJ) =1 (148)

Thus, Eqs (145) and (147) along with Eq (138) also form a set
of sufficient conditions for satiafying Eq (137).
With the use of Eqs (139) and (142) the two sets of condi~-

tions imposed on cv and c. may be written as

(. N"i) =1 (C_, C,S) =1 (149)

or (CV. C.V) =1 (C.. N'j) = 1 (150)

Coding Segquences. As previously mentioned, it is necessary
within the sets of static and vernier scales that the interval
length be common. Because of this requirement, it is possible
to consider a multi-static scale, multi-vernier scale device as
being a comdbination of several two-scale residue verniers which
bavo & common uﬁit length. Thus, as in the previous development,
it is permiasible to use the distance equations developed for the
two seale device. From Chapter IV

sl ebl enl -al \ (63)
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Substitution of Kkqs (132) and (133) into Eq (63) gives

h,CV V(mC_-n.C )
x = (—¢ B )N« s 2 N «n,C_ (S-V) (151)
v N v, i v
Vi 1 Vi b
Thus, &f“;& =-{q(ni) Nvi - nich} (152)
v x = Ixly N, F(x) (153)
V. 1
D §
where: n, = 0,1,2, seay Nv 0] <.vn'< Nv.
i i
oD h.Co¥ N=S-V
i = N,
i
. V(-ics-nicv)
any N,

i

From Eq (88) it may be seen that {vn‘z will be a monotone se-
Sg i
quence when

iNv, (154)

The second distance equation developed in Chapter IV may
be written

x'L =d L + el - f.L (74)
x jv jv s

Substitution of Eqs (77), (132), and (133) into Eq (74) gives

88
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x' = (--g:'—)x.i . (—ﬂ:‘-’— -CV e+ —L2) N, -0 (s-V) (155)
. s j
3 3 J
Thus, {.n;} = q(nj) N'j - n‘C.N} (156)
and x =lxly N, Gyx) (157)
s J
3
where: nj = 0’1'2. XEX) N.j 0o ‘ .nj < N.j
d,.C 8
G.(x) = —iYt— N=8=V
3 N,
J
e,C 8 n,C S
q(n,) = i b S ¥ S
3 N'j s N'j

The requirement for monotonicity of {fn.i may be developed
' J

Sy applying to Eq (156) the same logic used in Chapter 1I,

Eqs (19) through (22). The resulting requirement is

CN = rJN. g | (188)
J
The Chinese Remainder Theorem applied to the sets of equations

‘given by Eq (153) and (157) gives

x4~>(|x\nv o |x\uv ¢ sevy ‘x‘Nv . li‘N N ‘x‘u ’ ....|xlN. ) (159)

1 2 k 5 | ) -

89
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where 0 L£x<KVs

-

The preceding development has proven that a multi-vernier
scale, multi-static scale device, when properly designed, will
at coincidence of scales provide the residue number representa-
tion of x. A simple example (in fact, it's the simplest case)
of such a vernier device is given in Fig. 24.

There is one obvious point that is sufficiently important
to rate a mention. This point is that the above generalized
expressions reduce to the expressions developed earlier for

specific cases.

1 2
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Vi. Summary of Pertinent Results

The purpose of this paper, as stated in Chapter I, was to
investigate the relationship between vernier devices and residue
number systems. This investigation is now complete.

In order to conduct the investigation, it was found necessary
to first develop a theory for conventional verniers. The results
of this initial work are summarized at the end of Chapter Il,

With a theory of conveational verniers developed, it was then
possible to investigate the relationship between vernier devices
and residue numbers. The principal results of this investigation
are the design requirements for the residue vernier, a device for
converting numberg in decimal form into their residue equivalent
and vice versa. These results are summarized below:

1. The moduli of the residue number system to be used deter-
mine the device parameters Nv_ and st. To prevent ambiguity in

i

the number system, it is necessary that

(N ,N ) =1 (138)

where i=1,2, «o0y k and J = 1'2' scey M~

2. Given the above relation, there are two sets of suffi-

cient conditions for preventing ambiguity of scale readings.

.
3
H
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These are
(Cyo u") s 1 (C,s 9'5) =1 (149)
or . (cv. c.V) sl (c.. N. ) =1 (130)
RAT SN s P e
‘ o - ‘ ‘.."r..
where S = || N Vs “ N (97) (120)
\ \ S Wy 121 V1
..nd (:‘r and C. determine the cyclic nature of the reference scale.
3. The length of the intervals on the vernier and static
scales are given by
:‘. L' = c'sx.: . L‘ = c.vx.x : (132) (133)
ﬁ 4. The coding sequences for the vernier scales are
i {vn } - {atoy) N, - "1°v“} (152)
7 i i
-
Bl - : :
L a5 ] : where lli = 0!1.3. sy "' I OSIVu V4 NV
A g ‘ i i i
k*“%‘?'i* " 2 g .
b ORI and o NaS-V
e e PEEY e, © -
(4 IS . T . ‘-{a - .
o) . & =

ﬁ... {_'n;‘ ' .f{.q(:i',af) N'-‘ . °3°."} ' (158)
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where n:j = 0,1,2, «e+4y N 0<s <Ns.

6. Given parameters Nv 5 Ns ' Cv' and Cs which meet the
i J .
conditions given in paragraphs 1 and 2, then a vernicr device

constructed and coded according to the requirements given in

paragraphs 3, 4, and 5 will have scale readings at coincidence

that
x<—>(|x|N' 3 ‘xle s |x|Nv . |x|Ns . IX'NS ""'l"lN ) (189)
L 2 Kk 1 2 *m
where 0<&x £VsS
7. 1If the device parameters are such that
CN=rN 31 (154)

then the code sequence for the particular vernier scale will be

monotone. For static scales if

CN=z=rN + 1 (158)
8 8

J 8y

then the particular static scale will have a monotone code

sequence,

94
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8. For linear verniers, the minimum ratio of static scale
length to vernier scale length required to provide the complete

range of x is

NsLlg
1< i;n;“ﬁz (89)
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' ViI. Recommendations for Further Work

During the course of investigating the relationship between
~_y0rnior devices pnd residue numbers, several areas requiring addi-
tional work bcclin upp;rout. Unfortunately, due to a time limita-

5o i :
:- tdon the author was unable to pursue theae further. The following
-‘Hi‘a‘

oons Tl g ", 1ist presents some of these areas:
. 4-wm-*$ .@, :§§ L . %Fquhﬁ
; o E .o, W
-_%ifv “é S ﬁhﬂal;g.An immediately apparent application for the theory de-
- ﬁi" S ‘Mﬂ x

;lﬁhappoar- that tho vernier approach is applicable to both decimal

"-.. n-w.--».m -~ gl ‘1”’.“4‘

ﬁ;é@W and in.log convbrlton. Techniques for performing these conver-

-“C',ﬂ”ﬂ . ﬂ-‘ﬂfm‘
ﬁ§ﬂ;¢koions using, thll approaeh should be investigated.

%ﬁ%‘!’”“’“ i
TEE NAS has' boon shown that for certain operations with

‘ ?‘?% z"' -;“3-:3 # k.2 i'l'
1 ;ff@%%rwoiduo nu-bcr. it is desirable to have a knowledge of the func-
“B ,”ﬁ& " .
.. oo :'| ‘{ﬂ
e oL B "tion wix) - 'hlch was introducod in Chapter 111 (Ref 1: Chap III,
Pl g . AN g

% o pa p. 8=16 and 3:86-90). It appears that the relative displacement
- of the vornlor scale is associated with this function. This

rolatidnlhip should be investigated and developed.
V"
3e Th. thcory developed in this paper has been necessarily

'«

tied to a -ochnnical device which has inherent disadvantages.

An 1nvo-tigation could be performed to .determine the possibility

K

of realizing tho vornior function electronically. One approach

. that may bo pocothlo wonld be to use coincidence of pulses; the

pulse froquoncy corrolponding to the moduli of number systea.
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Some type of time delay may possibly be used to simulate rela-

tive scale displacement,

4, A direct extension of the work done in this paper

would be an investigation of the application of residue verniers

" to residue number arithmetic.

5. It was noted in Chapter II that vernier devices could
be constructed so that the scale readings give x in either a
fixed or a mixed radix system. This requires investigation to

determine what, if any, constraints exist and what applications

are possible.

6. As indicated in Chapter VI, some of the conditions for
designing a residue vernier are only sufficient. Further work

could be done to determine the necessary and sufficient condi-

tions.

9?7
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